Asset Allocation and Portfolio Management HW2

Problem 1

From

(1)(PATA0)(xv)=(qb)\begin{pmatrix} P & A^T \\ A & 0 \\ \end{pmatrix} \begin{pmatrix} x^* \\ v^* \\ \end{pmatrix} = \begin{pmatrix} -q \\ b \\ \end{pmatrix} \tag{1}

According to block matrix inversion formula, if we want to inverse (PATA0)\begin{pmatrix} P & A^T \\ A & 0 \\ \end{pmatrix}, PP and 00 should be invertible which is false. So we rewrite (1) as

(2)(A0PAT)(xv)=(bq)\begin{pmatrix} A & 0 \\ P & A^T \\ \end{pmatrix} \begin{pmatrix} x^* \\ v^* \\ \end{pmatrix} = \begin{pmatrix} b \\ -q \\ \end{pmatrix} \tag{2}

Then we need to inverse (A0PAT)\begin{pmatrix} A & 0 \\ P & A^T \\ \end{pmatrix}, the requirement is changed to AA and ATA^T should invertible which we can assume to be true. So we apply block matrix inversion formula to (A0PAT)\begin{pmatrix} A & 0 \\ P & A^T \\ \end{pmatrix} and get

(A0PAT)1=((A0(AT)1P)1A1110(PA1110+(AT))1(AT)1P(A0(AT)1P)1(PA1110+(AT))1)=(A10(AT)1P(A)1(AT)1)\begin{aligned} \begin{pmatrix} A & 0 \\ P & A^T \\ \end{pmatrix}^{-1} &= \begin{pmatrix} (A - 0(A^T)^{-1}P)^{-1} & - A^{-1}_{11}0(-PA^{-1}_{11}0 + (A^T))^{-1} \\ - (A^T)^{-1}P(A - 0(A^T)^{-1}P)^{-1} & (-PA^{-1}_{11}0 + (A^T))^{-1} \end{pmatrix} \\ &= \begin{pmatrix} A^{-1} & 0 \\ - (A^T)^{-1}P(A)^{-1} & (A^T)^{-1} \end{pmatrix} \\ \end{aligned}

(2)(xv)=(A0PAT)1(bq)=(A10(AT)1P(A)1(AT)1)(bq)=(A1b(AT)1P(A)1b(AT)1q) \begin{aligned} (2) \Rightarrow \begin{pmatrix} x^* \\ v^* \\ \end{pmatrix} &= \begin{pmatrix} A & 0 \\ P & A^T \\ \end{pmatrix}^{-1} \begin{pmatrix} b \\ -q \\ \end{pmatrix} \\ &= \begin{pmatrix} A^{-1} & 0 \\ - (A^T)^{-1}P(A)^{-1} & (A^T)^{-1} \end{pmatrix} \begin{pmatrix} b \\ -q \\ \end{pmatrix} \\ &= \begin{pmatrix} A^{-1}b \\ - (A^T)^{-1}P(A)^{-1} b - (A^T)^{-1}q \\ \end{pmatrix} \\ \end{aligned}

So

x=A1bx^* = A^{-1}b

And we must assume AA and ATA^T are invertible. What’s more, we know that AA is invertible if and only if ATA^T is invertible. So actually we only must assume AA is invertible.

And if PP is positive semi-definite but has a non-trival null space, then since xx^* is only depends on AA and bb, so the solutions to the original equality-constrained optimization problem are still existing and unique.

Brief Proof of Block Matrix Inversion Formula

Please see the complete proof here. [1]

A=(A11A12A21A22),B=(B11B12B21B22)A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ \end{pmatrix}

Let B=A1B = A^{-1}, then

AB=(A11A12A21A22)(B11B12B21B22)=(IkOk,nkOnk,kInk)AB = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ \end{pmatrix} = \begin{pmatrix} I_k & O_{k,n-k} \\ O_{n-k,k} & I_{n-k} \end{pmatrix}

(1){A11B11+A12B21=IkA11B12+A12B22=Ok,nkA21B11+A22B21=Onk,kA21B12+A22B22=Ink\Rightarrow \begin{cases} A_{11}B_{11} + A_{12}B_{21} = I_{k} \\ A_{11}B_{12} + A_{12}B_{22} = O_{k,n-k}\\ A_{21}B_{11} + A_{22}B_{21} = O_{n-k,k}\\ A_{21}B_{12} + A_{22}B_{22} = I_{n-k}\\ \end{cases} \tag{1}

(2)(1){B12=A111A12B22B21=A221A21B11(1)\Rightarrow \begin{cases} B_{12} = - A^{-1}_{11}A_{12}B_{22} \\ B_{21} = - A_{22}^{-1}A_{21}B_{11} \\ \end{cases} \tag{2}

(3)(1){A11B11A12A221A21B11=Ik(A11A12A221A21)B11=IkA21A111A12B22+A22B22=Ink(A21A111A12+A22)B22=Ink(1)\Rightarrow \begin{cases} A_{11}B_{11} - A_{12}A_{22}^{-1}A_{21}B_{11} = I_{k} \\ (A_{11} - A_{12}A_{22}^{-1}A_{21})B_{11} = I_{k} \\ -A_{21}A^{-1}_{11}A_{12}B_{22} + A_{22}B_{22} = I_{n-k}\\ (-A_{21}A^{-1}_{11}A_{12} + A_{22})B_{22} = I_{n-k}\\ \end{cases} \tag{3}

(4)(3){B11=(A11A12A221A21)1B22=(A21A111A12+A22)1(3)\Rightarrow \begin{cases} B_{11} = (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} \\ B_{22} = (-A_{21}A^{-1}_{11}A_{12} + A_{22})^{-1}\\ \end{cases} \tag{4}

(5)Substituting (4) in (2){B12=A111A12(A21A111A12+A22)1B21=A221A21(A11A12A221A21)1\text{Substituting (4) in (2)} \Rightarrow \begin{cases} B_{12} = - A^{-1}_{11}A_{12}(-A_{21}A^{-1}_{11}A_{12} + A_{22})^{-1} \\ B_{21} = - A_{22}^{-1}A_{21}(A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} \\ \end{cases} \tag{5}

(4)&(5)A1=((A11A12A221A21)1A111A12(A21A111A12+A22)1A221A21(A11A12A221A21)1(A21A111A12+A22)1)(4) \,\&\, (5) \Rightarrow A^{-1} = \begin{pmatrix} (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} & - A^{-1}_{11}A_{12}(-A_{21}A^{-1}_{11}A_{12} + A_{22})^{-1} \\ - A_{22}^{-1}A_{21}(A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} & (-A_{21}A^{-1}_{11}A_{12} + A_{22})^{-1} \end{pmatrix}

This formula requires A11A_{11} and A22A_{22} to be invertible as A111A_{11}^{-1} and A221A_{22}^{-1} are used in the formula.

Problem 2

The Lagrangian for the perturbed problem is

L(x,λ,ν,u,v)=f0(x)+i=1mλi[fi(x)ui]+j=1pνj[hj(x)vj]L(x,\lambda, \nu, u, v) = f_0(x) + \sum_{i=1}^{m}\lambda_i[f_i(x) - u_i] + \sum_{j=1}^{p}\nu_j[h_j(x) - v_j]

The Lagrange dual function is

g(λ,ν,u,v)=infxDL(x,λ,ν,u,v)g(\lambda, \nu, u, v) = \inf_{x\in \mathcal{D}} L(x,\lambda, \nu, u, v)

strong duality holdsd=p\text{strong duality holds}\Rightarrow d^* = p^*

p(u,v)=inf{f0(x)fi(x)ui0,hj(x)vi=0(i,j)}p^*(u,v) = \inf\{f_0(x) \mid f_i(x) - u_i \leq 0, \, h_j(x) - v_i= 0 \, (\forall i,j)\}

λi=pui(0,0),νj=pvi(0,0)\lambda^*_i = -\frac{\partial p^*}{\partial u_i}(0,0),\quad \nu^*_j=-\frac{\partial p^*}{\partial v_i}(0,0)

Reference

[1] http://www.math.chalmers.se/~rootzen/highdimensional/blockmatrixinverse.pdf

  • The utility of a market buy order is (β2VA\beta_2\,V - A).

  • The utility of a limit buy order is (Aβ2V)P3B(A - \beta_2\,V) \,{\mathbb{P} }^B_3.

Thus, submit a MS only if Bβ2V(Aβ2V)P3BB - \beta_2\,V \geq (A - \beta_2\,V) \,{\mathbb{P} }^B_3 or equivalently

β2BAP3BV(1P3B)=BAP3BV(1P3B)=160187.\beta_2 \leq \frac{B-A\,{\mathbb{P} }^B_3}{V\,(1-{\mathbb{P} }^B_3)} = \frac{B-A\,{\mathbb{P} }^B_3}{V\,(1-{\mathbb{P} }^B_3)} =\frac{160}{187}.

Continuing in this way, we compute that a seller will choose as follows:

Action Condition Numerically
Marketsell(MS) Bβ2V(Aβ2V)+P3BB-\beta_2\,V \geq (A-\beta_2\,V)^+\,{\mathbb{P} }^B_{3} $$0 \leq \beta_2<\frac{160}{187}$$
Limitsell(LS) $$(A-\beta_2,V),{\mathbb{P} }B_{3}>(B-\beta_2,V)+$$ $$\frac{160}{187}\leq \beta_2<\frac{12}{11}$$
Do nothing otherwise $$\frac{12}{11}\leq \beta_2 \leq 2$$

Thus, conditional on an empty book and the trader being a seller,

\begin{eqnarray*} {\mathbb{P} }_2^{MS}&=&{\mathbb{P} }\left(\beta_2<\frac{160}{187}\right)=\frac{80}{187}\ {\mathbb{P} }2^{0}&=&{\mathbb{P} }\left(\beta_2>\frac{12}{11}\right)=\frac{5}{11}\ {\mathbb{P} }2^{LS}&=&1-{\mathbb{P} }{MS}-{\mathbb{P} }{0}=1-\frac{80}{187}-\frac{5}{11}=\frac{2}{17}. \end{eqnarray*}

0%