Asset Allocation and Portfolio Management HW1

Problem 1

Sufficiency

If an agent is risk-averse, then

E[u(ω+z~)]u(ω)ω,z~ with E[z~]=0E[u(ω+z~)]u(ω+E[z~])E[u(ω+z~)]u(E[ω+z~])Let X=ω+z~,E[u(X)]u(E[X])u() is concave.\begin{aligned} &\mathbb{E}[u(\omega + \tilde{z})] \leq u(\omega) \quad \forall\omega,\forall\tilde{z} \text{ with } \mathbb{E}[\tilde{z}] = 0 \\ \Rightarrow &\mathbb{E}\left[ u(\omega + \tilde{z}) \right] \leq u(\omega + \mathbb{E}[\tilde{z}]) \\ \Rightarrow &\mathbb{E}\left[ u(\omega + \tilde{z}) \right] \leq u( \mathbb{E}[\omega +\tilde{z}]) \\ \text{Let $X = \omega +\tilde{z}$,} \\ \Rightarrow &\mathbb{E}\left[ u(X) \right] \leq u( \mathbb{E}[X]) \\ \Rightarrow &u() \text{ is concave.} \end{aligned}

Necessity

If u()u() is concave, then

E[u(X)]u(E[X])Let X=ω+z~, where E[z~]=0ω is non-randomE[u(ω+z~)]u(E[ω+z~])E[u(ω+z~)]u(ω+E[z~])E[u(ω+z~)]u(ω)ω,z~ with E[z~]=0This agent is risk-averse.\begin{aligned} &\mathbb{E}\left[ u(X) \right] \leq u( \mathbb{E}[X]) \\ \text{Let $X = \omega +\tilde{z}$,} & \text{ where $\mathbb{E}[\tilde{z}] = 0$, $\omega$ is non-random} \\ \Rightarrow &\mathbb{E}\left[ u(\omega + \tilde{z}) \right] \leq u( \mathbb{E}[\omega +\tilde{z}]) \\ \Rightarrow &\mathbb{E}\left[ u(\omega + \tilde{z}) \right] \leq u(\omega + \mathbb{E}[\tilde{z}]) \\ \Rightarrow &\mathbb{E}[u(\omega + \tilde{z})] \leq u(\omega) \quad \forall\omega,\forall\tilde{z} \text{ with } \mathbb{E}[\tilde{z}] = 0 \\ \Rightarrow &\text{This agent is risk-averse.} \end{aligned}

Problem 2

u(w)=exp(κw)/κu(w)=exp(κw)u(w)=κexp(κw)\begin{aligned} &u(w) = − exp(−κw)/κ \\ \Rightarrow & u^\prime(w) = exp(−κw)\\ \Rightarrow & u^{\prime\prime}(w) = -κexp(−κw)\\ \end{aligned}

So

(2.1)A(w)=u(w)u(w)=κA(w) = -\frac{u^{\prime\prime}(w)}{u^\prime(w)} = \kappa \tag{2.1}

And we know

E[u(w+z~)]=E[u(w~)]w~ is normally distributed with mean μ and variance Σ2E[u(w~)]=1κE[exp(κw~)]u(w~)=1κexp(κμ+κ2σ22)\begin{aligned} &\mathbb{E}\left[ u(w+\tilde{z}) \right] =\mathbb{E}\left[ u(\tilde{w}) \right] \quad \text{$\tilde{w}$ is normally distributed with mean $\mu$ and variance $\Sigma^2$} \\ \Rightarrow &\mathbb{E}\left[ u(\tilde{w}) \right] = -\frac{1}{\kappa}\mathbb{E}\left[ exp(−κ\tilde{w}) \right] \\ \Rightarrow & u(\tilde{w})= -\frac{1}{\kappa}exp(−κ\mu + \frac{\kappa^2\sigma^2}{2})\\ \end{aligned}

So

(2.2)u(w~)=1κexp(κ(μκσ22))u(\tilde{w})= -\frac{1}{\kappa}exp(−κ(\mu - \frac{\kappa\sigma^2}{2})) \tag{2.2}

And we know

(2.3)u(wΠ)=exp(κ(wΠ))/κu(w-\Pi) = − exp(−κ(w-\Pi))/κ \tag{2.3}

Combined (2.2)(2.2) and (2.3)(2.3) we can get

(2.4)Π=κσ22\Pi = \frac{\kappa\sigma^2}{2} \tag{2.4}

Plug (2.1)(2.1) into (2.4)(2.4) we can get

Π=σ22A(w)\Pi = \frac{\sigma^2}{2}A(w)

So the Arrow-Pratt approximation is exact.

Problem 3

(a)(b)(a)\Rightarrow (b)

It is equivalent to prove that not (b) implies not (a).

not (b) is

w, s.t. Av(w)<Au(w)\exists w, \text{ s.t. }A_v(w) < A_u(w)

Let the point s.t.Av(w)<Au(w) be x. i.e. Av(x)<Au(x)\text{Let the point s.t.} A_v(w) < A_u(w) \text{ be }x \text{. i.e. } A_v(x) < A_u(x).

Let v(x)=tx=v1(t)\text{Let } v(x) = t \quad \Rightarrow x = v^{-1}(t)

First, We want to show that u(v1()) is strictly concave at tu(v^{-1}(\bullet)) \text{ is strictly concave at } t

Av(x)<Au(x)Av(x)Au(x)<0v(x)v(x)+u(x)u(x)<0ddwlogu(x)v(x)<0logu(x)v(x) is decreasingu(x)v(x) is decreasingu(v1(t))v(v1(t))=ddtu(v1(t)) is decreasingSince ddtu(v1(t))=u(v1(t))[d(v1(t))dt]=u(v1(t))[1v(v1(t))]=u(v1(t))v(v1(t))d2dt2u(v1(t))<0u(v1()) is strictly concave at t\begin{aligned} &A_v(x) < A_u(x) \\ \Rightarrow &A_v(x) - A_u(x) < 0\\ \Rightarrow &-\frac{v^{\prime\prime}(x)}{v^\prime(x)} + \frac{u^{\prime\prime}(x)}{u^\prime(x)} < 0 \\ \Rightarrow &\frac{d}{dw}log\frac{u^\prime(x)}{v^\prime(x)} < 0 \\ \Rightarrow &log\frac{u^\prime(x)}{v^\prime(x)} \text{ is decreasing} \\ \Rightarrow &\frac{u^\prime(x)}{v^\prime(x)} \text{ is decreasing} \\ \Rightarrow &\frac{u^\prime(v^{-1}(t))}{v^\prime(v^{-1}(t))} = \frac{d}{dt}u(v^{-1}(t)) \text{ is decreasing} \\ &\text{Since } \frac{d}{dt}u(v^{-1}(t)) =u^\prime(v^{-1}(t))[\frac{d(v^{-1}(t))}{dt}] =u^\prime(v^{-1}(t))[\frac{1}{v^\prime(v^{-1}(t))}] = \frac{u^\prime(v^{-1}(t))}{v^\prime(v^{-1}(t))} \\ \Rightarrow &\frac{d^2}{dt^2}u(v^{-1}(t)) < 0 \\ \Rightarrow &u(v^{-1}(\bullet)) \text{ is strictly concave at } t \end{aligned}

According to Jensen’s inequality

(3.1)E[u(v1(t))]<u(v1(E[t]))\mathbb{E}\left[ u(v^{-1}(t)) \right] < u(v^{-1}(\mathbb{E}\left[ t \right]))\tag{3.1}

And we know

E[u(w+z~)]=u(wΠu)\mathbb{E}\left[ u(w+\tilde{z}) \right] = u(w - \Pi_u)

E[v(w+z~)]=v(wΠv)\mathbb{E}\left[ v(w+\tilde{z}) \right] = v(w - \Pi_v)

So

Πu=wu1(E[u(w+z~)])\Pi_u = w-u^{-1}(\mathbb{E}\left[ u(w+\tilde{z}) \right])

Πv=wv1(E[v(w+z~)])\Pi_v = w-v^{-1}(\mathbb{E}\left[ v(w+\tilde{z}) \right])

ΠvΠu=v1(E[v(w+z~)])+u1(E[u(w+z~)])=v1(E[v(w+z~)])+u1(E[u(w+z~)])\begin{aligned} \Pi_v - \Pi_u &= -v^{-1}(\mathbb{E}\left[ v(w+\tilde{z}) \right]) + u^{-1}(\mathbb{E}\left[ u(w+\tilde{z}) \right]) \\ &= -v^{-1}(\mathbb{E}\left[ v(w+\tilde{z}) \right]) + u^{-1}(\mathbb{E}\left[ u(w+\tilde{z}) \right]) \end{aligned}

Let v(w+z~)=tv(w+\tilde{z}) = t, i.e. the risk is z~=v1(t)w\tilde{z} = v^{-1}(t) - w. And we know E[z~]=v1(t)w=0\mathbb{E}\left[ \tilde{z} \right] = v^{-1}(t) - w = 0, so

w=v1(t)w = v^{-1}(t)

z~=0\tilde{z} = 0

Then

(3.2)ΠvΠu=v1(E[t])+u1(E[u(v1(t))])\Pi_v - \Pi_u = -v^{-1}(\mathbb{E}\left[ t \right]) + u^{-1}(\mathbb{E}\left[ u(v^{-1}(t)) \right]) \tag{3.2}

Substituting (3.1) into (3.2), we obtain

ΠvΠu<v1(E[t])+u1(u(v1(E[t])))ΠvΠu<v1(E[t])+v1(E[t])ΠvΠu<0Πv<Πu \begin{aligned} &\Pi_v - \Pi_u < -v^{-1}(\mathbb{E}\left[ t \right]) + u^{-1}(u(v^{-1}(\mathbb{E}\left[ t \right]))) \\ \Rightarrow &\Pi_v - \Pi_u < -v^{-1}(\mathbb{E}\left[ t \right]) + v^{-1}(\mathbb{E}\left[ t \right])\\ \Rightarrow &\Pi_v - \Pi_u < 0 \\ \Rightarrow &\Pi_v < \Pi_u \end{aligned}

So

(3.3)Πv<Πuwhen w=v1(t),z~=0\Pi_v < \Pi_u \quad \text{when } w = v^{-1}(t), \tilde{z} = 0 \tag{3.3}

(a) implies that ΠvΠu\Pi_v \geq \Pi_u for any risk. so (3.3) implies not (a)

So we have proved that

not(b)not(a)\text{not}(b) \Rightarrow \text{not}(a)

which is equivalent to

(a)(b)(a)\Rightarrow (b)

(c)(a)(c) \Rightarrow (a)

Given (c)(c), we have

v(wΠv)=E[v(w+z~)]=E[ϕ(u(w+z~))]v(w-\Pi_v) = \mathbb{E}\left[ v(w+\tilde{z}) \right] = \mathbb{E}\left[ \phi(u(w+\tilde{z})) \right]

ϕ is concaveE[ϕ(u(w+z~))]ϕ(E[u(w+z~)])=ϕ(u(wΠu))=v(wΠu)\begin{aligned} \phi \text{ is concave} \Rightarrow \mathbb{E}\left[ \phi(u(w+\tilde{z})) \right] &\leq \phi(\mathbb{E}\left[ u(w+\tilde{z}) \right]) \\ &=\phi(u(w-\Pi_u)) \\ &=v(w-\Pi_u) \end{aligned}

v(wΠv)v(wΠu)\Rightarrow v(w-\Pi_v) \leq v(w-\Pi_u)

And vv is utility function, so vv is increasing, which implies ΠvΠu\Pi_v \geq \Pi_u for any risk. So agent vv is more risk-averse than agent uu.

(b)(b) and (c)(c) are equivalent

uu is increasing, i.e. u0u^\prime \geq 0.

v(w)=ϕ(u(w))v(w)=ϕ(u(w))u(w)v(w)=ϕ(u(w))(u(w))2+ϕ(u(w))u(w)Av(w)=ϕ(u(w))(u(w))2+ϕ(u(w))u(w)ϕ(u(w))u(w)=Au(w)ϕ(u(w))u(w)ϕ(u(w))\begin{aligned} v(w) &= \phi(u(w)) \\ \Rightarrow v^{\prime}(w) &= \phi^{\prime}(u(w))u^\prime(w) \\ \Rightarrow v^{\prime\prime}(w) &= \phi^{\prime\prime}(u(w))(u^\prime(w))^2 +\phi^{\prime}(u(w))u^{\prime\prime}(w) \\ \Rightarrow A_v(w) &= -\frac {\phi^{\prime\prime}(u(w))(u^\prime(w))^2 +\phi^{\prime}(u(w))u^{\prime\prime}(w)} {\phi^{\prime}(u(w))u^\prime(w)} \\ &=A_u(w) - \frac{\phi^{\prime\prime}(u(w))u^\prime(w)} {\phi^{\prime}(u(w))} \end{aligned}

(c)(b)(c) \Rightarrow (b)

ϕ0\phi^{\prime\prime} \leq0 and ϕ>0\phi^\prime > 0 \Rightarrow ϕ(u(w))u(w)ϕ(u(w))0\frac{\phi^{\prime\prime}(u(w))u^\prime(w)} {\phi^{\prime}(u(w))} \leq 0. So Av(w)Au(w)A_v(w) \geq A_u(w) for all ww.

(b)(c)(b) \Rightarrow (c)

Av(w)Au(w)A_v(w) \geq A_u(w) for all ww means ϕ(u(w))u(w)ϕ(u(w))0\frac{\phi^{\prime\prime}(u(w))u^\prime(w)} {\phi^{\prime}(u(w))} \leq 0. uu and vv are utility function, so ϕ\phi should be increasing function, i.e. ϕ>0\phi^\prime > 0. So we have ϕ0\phi^{\prime\prime} \leq 0 i.e. Function v is a concave transformation of function u.

Problem 4

Same decisions

v(x)=a+bu(x)v(x) = a + bu(x) for all xx, for some pair of scalars aa and bb, where bb >0.

v(x)>v(y)a+bu(x)>a+bu(y)u(x)>u(y) \begin{aligned} &v(x) > v(y)\\ \Leftrightarrow& a + bu(x) > a+bu(y) \\ \Leftrightarrow& u(x) > u(y) \end{aligned}

This deduction also holds for equality.

v(x)=v(y)a+bu(x)=a+bu(y)u(x)=u(y) \begin{aligned} &v(x) = v(y)\\ \Leftrightarrow& a + bu(x) = a+bu(y) \\ \Leftrightarrow& u(x) = u(y) \end{aligned}

So a decision-maker with utility function v()v() makes the same decisions as a decision maker with utility function u()u()

Same certainty-equivalents

e is certainty-equivalent of z~ for v()v(w+e)=E[v(w+z~)]a+bu(w+e)=E[a+bu(w+z~)]a+bu(w+e)=a+bE[u(w+z~)]u(w+e)=E[u(w+z~)]e is certainty-equivalent of z~ for u()\begin{aligned} &e \text{ is certainty-equivalent of $\tilde{z}$ for $v()$} \\ \Leftrightarrow &v(w + e) = \mathbb{E}\left[ v(w+\tilde{z}) \right]\\ \Leftrightarrow &a + bu(w+e) = \mathbb{E}\left[ a+bu(w+\tilde{z}) \right]\\ \Leftrightarrow &a + bu(w+e) = a+b\mathbb{E}\left[ u(w+\tilde{z}) \right]\\ \Leftrightarrow &u(w+e) = \mathbb{E}\left[ u(w+\tilde{z}) \right]\\ \Leftrightarrow &e \text{ is certainty-equivalent of $\tilde{z}$ for $u()$} \\ \end{aligned}

So a decision-maker with utility function v()v() has the same certainty-equivalents as a decision maker with utility function u()u()

0%